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TESTING THE INDEPENDENCE OF REGRESSION
ERRORS*

FE R. BERNARDO**

I. The Linear Regression Model
Consider the equation

L =HA
where L= (1,, 1,, ..., 1)’ is a (n,1) matrix of unknown
real numbers, A = (a,, a, ..., &)’ is 8 (K, 1) matrix of
unknown real numbers and H = (hij) (i=1, ..., n ;
j=1,2,...,k) is a (n,k) matrix of known real numbers.

The quantities 1, (i=1,2, ..., n) are not directly ob-
served. However they are supposed to differ from the ob-
served quantities Z; (I = 1,2,...,n) by unknown random
variables w; so that for every i,

Z, =1, 4w, © (1.1)
IfW= (w, Wo, ..., Wo)*and Z = 2,, 2,, ... Z,)’ then
(1.1) maybe written in matrix form as
Z=L4+W
or Z=HA4W (1.2)

The random variable W is assumed to be multivariate
normal with zero mean and variance-covariance matrix



56

FE R. BERNARDO

where s;® is the variance of w;. It is also assumed that
each of the s;? is a multiple of an unknown quantity s?

that is

8,
S“:i = —

d,

where the d; ’s are known ‘““weights”

Let D = (\/d: &), where §,; is the Kronecher symbol.
Applying the transformation

Y: = DZ
equation (1.2) becomeg
Y=XA4+7U (1.3)

where X — DH, U = DW. Therefore the first two mo-
ments of U are

E(0) = DE(W) — 0
V(0) D*V(W) = (disi®;) = s* L

Smce U = DW is a linear transformation, then U is a multi-
normal vector (with mean zero and variance-covariance
matrix s® I).

Equation (1.8).is known as the linear regression model.

-Since (1.3) has more unknowns than equations, it has
no unique solution. However, A can be estimated so that

"U’U 'is minimum. This estimator of A, called the least

squares estimator, is
A= (XX) X'Y.

Under the assumptions on X and U mentioned above,
we have

E(A) = E ( ‘X)) X (XA + U)
+ (X'’X)= X’ E(0)

il

A
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and
V(A) = (X’X)" V(YY) (X’X)= X’
= (X’X)' X’ (s2) X(X’X)=
= s2(X'X)=
The likelihood function of U is
1 [ UU ]
L=-——7——exp |-
(2x)n/2 gv [ 2s2 ]
Hence:
n n 1
InL= - —1In2x — — 1ns? (Y-XA)' (Y — XA)
2 2 232
A n n -1 A
and In L = - — 1n2y - — 1ns? (Y - XA)’ (Y - XA),
2 2 2s?
a2ln L -X'X
so that —

aA? s?

" Thus, Fisher’s information matrix I is

[ a21lnL ]
= - E|—mm |
L aA? ]
[ XX ] X'X [ 1=
= - E|- | = = [V(@&)].
[ 8? ] s? [ ]

We therefore conclude A is an unbiased estimator of A,
and that in the class of all unbiased estimators of A, A has
the least variance.

However, when the components of U are not in-
dependent of each other, then A is no longer the best esti-
mator of A. This is proven in section 3.1 of text.

It is therefore necessary to test for the indepen-
dence of the U, ’s whenever least sauares regression me-
thods are used, that is test the hypothesis



58 FE R. BERNARDO

H,: 0 / N(O, 1) (1.4)
against the hypothesis

H.:0 / N(O s 3) (1.5)
when = ig a given matrix different from 1.

Since the errors U; ’s are unknown the test must be
based on the residuals from the estimated regression line
11, (also called the lzast squares estimator of U) which
is defined as

U =Y-XA
= [I — X(X’X)= X]Y
=MY=MTU
Now,
V(U) =M V(0) M’
=M (1) M’
=35 M

under the null hypothesis (1.4). This implies that the
residuals are correlated. Consequently, the ordinary tests
of independence can not be used to test (1.4) against (1.5).

II. Tests of the Null Hypothesis

Von Neuman, reviving a procedure introduced in the 19th
century by a German scientist, tackles the problem of
testing for independence of regression errors by using
the ratio of the mean square successive difference to the
variance, that is:

1 n
— 2 (O — )2
n-1 i=2
Q= . (2.1)
1 n :
— z (& — )
n i=1

The null hypothesis (1.4) is rejected at significance level §
whenever an observed Q<Qs where Pr (Q < Quv/H,) = (.
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T.W. Anderson and R. L. Anderson studied the model
Vi— i = (yi—-L —_— ,Uai—-l) + € (i=1, ey n) (2.2)‘

where the y, ’s are observed values, the ¢; ’s are random errors.
which are normally and independently distributed with mean
zero and variance §%; while the u; 's are linear combinations.
of Fourier terms. They then defined the circular serial cor-
relation coefficient of this model as

n
2 -m) (Y —mya)

1=

R =
n .

2 ( —my)?

i=1

where m, =— m, and m; is an estimate of u,. This statistic can
be used to test the null hypothesis

H, : =0 '
against the alternative hypothesis

H, : >0
or H): P<0

where the respective critical regions are

B ={R|R2R, >0} (2.8)
B2=4{R | R =R, <0}

with R, and R, being the critical values corresponding to a
given significance level.

Suppose that the alternative to the null hypothesis (1.4)
is that the u, ’s follow a stationary Markoff scheme, i.e.

w o= P(u_) +e& (i=...—1,0,1,...) (2.4)
where |8|<1 and ¢ / N(0, s?). Then the hypotheses (1.4)
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and (1.5) are equivalent to the hypotheses

H*:P=0 (2.5)
H*:P>0 (2.6)
respectively.

Now, the regression equation (1.3) can be written as

k

Y. = .2131)(” + u; (i=1, vy n).
J:

Then (2.4) becomes

k k
Vi— 2 ajxXi;=P(ymu — 2 a X))+« (=1, ..., 1)
=1 =1
n
which falls under the model (2.2) with uy = = a;X;;.

1=

Therefore, when the regression vectors, that is the culomns
of the matrix X in the regression model (1.8) coincide with

—_ . 2um
vectors (cos 2 |1 i,cos 4 Il i, ..., cos )’ and
n
n n
271 47 i 2n [ i
(sin , sin , ..., SIN )’, then
n n n
n n
T oyi—my) (Vima — my—y) z @, §,_,
i=1 i=1
R = =
2 (yi—my)? = ap
n n

can be used to test hypothesis (2.5) against hypothesis (2.6)
with critical regions defined in (2.3).

The most commonly used test procedure is the one intro-
duced by Durbin and Watson. The statistic used us
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A A
U A, U
d=
A A
0 U
1 1 0 ... 0 0
-1 2 -1 ... 0 0
0 0 o ... 1 1

The exact distribution of d was found by Durbin-Watson
using the Imhof method. But because of the fact that
U= [I — X(X’X)~ XI] U, the distribution of d depends on X.
Hence its significance points can be tabulated only for a given
X, implying that these significance points will have to be com-
puted everytime this test procedure is used.

Durbin and Watson showed that when S of the K regression
vectors coincide with S of the latent vectors of A4 then bounds
of d can be found equal to

n-k
b Alzi’
=1

n-k
> Zz|

1=

n-k
S i s 2%

1=

n-k
2z 2
i=1

where A, ..., Ac_s are the eigen values associated with the
remaining n-s eigenvectors of A,. Now, when a constant is
fitted in the regression model, the first column of the X
matrix consists of all ones. Hence it coincides with the eigen-
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vector of A, corresponding to the zero eigenvalue. Thug there
exists bounds of d, that is,
dL < d< du

where
n-k
= VAN
i=1

n-k
= z;’
=1

n-k.
D N A
i=1
duv =

n-k
=z
i=1

Instead of looking -for the significance points of d, the
following procedure called the “bounds test” maybe used:

reject H, whenever computed d< du
do not reject H, whenever computed d > du
test inconclusive if computed d is between di1 and du.

This dependence on X of the distribution of test statistics
based on the least squares estimator U of U led to the discovery
of other estimators of U.

Theil is the first to introduce an estimator of U which is
independent of X, the BLUS estimator U*. He constructed
U* with variance-covariance matrix s> I and such that it is
also best linear unbiased estimator of U. Because of this ad-
ditional restriction on U*, it can estimate only n-k of the errors
U, Uy ..., U,. He therefore partitioned the matrices in the
Tegression equation (1.3) into :

{Yolz{_X_‘,- A+on']>

Y, | X, LuJ

! ¢
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where U, consists of the K components of U which are not
represented in U*. The matrix M is also partitioned into

Moo | Mol
M — {____
M0 | M,
where M, is (k, k) and M,;, is a principal (n-k, n-k) minor.

Theil then derived U* in terms of U as

k 1 A
U*=0, + = (——— 1) PP/C,
=1 Ve

O,
where U0 = { -——} ,and g; (i==1,...,k) are the K roots of M,,
0,

which are less than one, and P, are its corresponding eigen-
vectors. The von Neuman ratio of U*

n—k
2 (w*—u*_,)?
i=2
Q* = (2.7)
n—r
> (uxlrl _ﬁ*)z
i—=1

can be used to test (1.4) versus (1.5) rejecting the null hypo-
thesis when an observed Q* < Q*, where Q*, is a constant
such that Pr(Q* < Q*, | H,) = q, the pre-assigned size of the
test

Abrahamse and Koerst derived another estimator W* of U
which is best in the class of all linear unbiased estimators of
U. To make W* independent of X, the authors imposed the
condition that the covariance matrix of W* is a fixed matrix
F chosen a priori to be independent of X. The expression for
W* is

1%

W* = [K'MK] K © (2.8)
where M = I — X(X’X)"X’ and K’K = F.
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Equation (2.8) shows that given K, or equivalently, spe-
cifying F, a corresponding W* can be formed. The authors
proved that if K is chosen to be the matrix consisting of the
eigenvectors corresponding to the n-k largest roots of Aq4, then -

WY A W
Q, ¥ ¥ ¥ 0
S owr we

has the same distribution as Durbin-Watson’s upper bound dv,
and hence is independent of X.

Durbin proposes the following procedure as an alternative
to the bounds test when the regression vectors do not coincide
with the eigenvectors of A;. Let L be the matrix whose columns
are the k-1 eigenvectors of A,y corresponding to the k-1 smallest
non-zero eigenvalue. Then instead of (1.3), he considered the
model

[ &
Y=(E|X|L) % A, + U
L A

where E is the vector with unit elements. Suppose §,, 4., A, are
the least squares estimates of a,, A., A; with

V(A,) = s* G, = s* PP/
V(Al) = g° ng = 82 Psz’

Durbin then defined the vector

2=Y—51E— XAz— IAA3+X2A4
with A, = P,P.~A.; Xt + X — L(L’L)= I'X. Then he showed
that the statistic

n
S (2 —2zi)?
i=2
d =

n
) Ziz

1—
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has the same distribution as duv whose significance points have
already been tabulated since distribution is independent of X.

Koteswara Rao Kadiyala suggests three test criteria based
on the estimator W of U which is defined as

W=PTU

Here P is a set of eigenvectors of M = I-X (X'X)= X which
simultaneously diagonalizes =, the variance-covariance matrix
U under the alternative hypothesis. Like Theil’s BLUS esti-
mator, W estimates only n-k of the components of the error
vector U.

Rao’s first test statistic is

W’ D W
A A

Sl=

where D = P X P’ is a diagonal matrix but whose diagonal ele-
ments need not be the eigenvalues of =. H, is rejected when
an observed S, = S, 4, where S, 4 ig the significance point of S,
corresponding to &, the size of the rest.

The second test procedure proposed by Rao is based on
von Neuman ratio
W AW

W W

Sg=

where is the (n-k n-k) diagonal matrix with the non-zero cha-
racteristic roots of A, arranged in decreasing order of magni-
tude along the diagonal. The critical region is

,B4={W l st Sz&u}

where S.1 is a constant such that Pr (S, = S,8) = 4, the pre-
assigned size of the test.

For his third test criterion, Rao considers two (n-k, 1)
vector, L, and L. such that

LL’ = 0; L’'L, =1=L,/L..
L. Wi

Bs = { W||si| = Z St
L W]
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where S;0 is determined from the equation
Pr (S; = SeuiH,) = 3,
the size of the test given in advance. S; under H, and b 4 ds,)

under H. where
L,’ DL.

[ (L DL.)’ 1%
(L DL,))% |L,; DL; — ——————
L

b =

(L’ DL,)’ ]

and
— (L, DL,) %

© (LY DLy %
L DL, - ———— —
' L, DL,

both follow a cauchy distribution. Hence significance points
and power of S; can easily be obtained.

III. Derivation of the Distribution. of Rao’s Test Criterion S,

Imhof, in his paper “Computing the Distributions of
Quadratic forms in Normal Variables” [20] proved the follow-
ing theorem:

Theorem 3.1. Let Z = (z,, ...,zZ.)’ be 2 random vector
which is normally distributed with mean 0 and covariance
matrix F. Let p = (ui, ..., um)’ be a constant vector and
consider the quadratic form:

Q= (Z+ ) A (Z + p)

where A is a given matrix. If F is non-singular, Q can be
written as

m .
Q = 32 & X“:hi ’ A%i? ,
i=1

where

8; is a non-zero root of F;
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A, is a linear combination of ,, ..., u;
X2;; A% is an independent chi-squarevariable with h,

degrees of freedom and non-centrality parameter a2

Then

Pr(Qz1Z) AL

-

— — dr, (3.1)
. . T ¢ (r)
where
m -Y%zy .
e (l') = %.2 [hi tan— (81'1') + A% 8T (1 + 8321’2)-1]
1=
m %hi m
¢ (r) =.||1(1 -+ 8,°r?) exp %.2 (A 8r)2 /(1 + 8:r2) 1.
1=

1=

lim sin @ (r) m
=% I § (h[-}-)‘,)z—’)ﬁz

r-0 ro¢(r) i=1

— ® ,ifz >0
Hm
r—m{¢<r>=}< o ,ifz<0
’ _ T m )
—2h|8|‘8||'1 ifz=0
L4 i=1

Let us use above theorem to determine the cumula-
tive distribution of Rao’s S, (henceforth to be denoted by

S), under the null hypothesis H, : O _/— N (O, I). We have
fWDt W ]
Pr(S<S)=Pr|— =8|

LW W ]

= Pr[(P0O)’ D= - SI) (PU) = 0].

Since P’ (Dt — SI)P is symmetric, then there exists an
orthogonal (n,n) matrix H such that
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H'P (D — SI) PH = A
or

P(D" —~S)P=HA B,

where A is the diagonal matrix whose elements are the
eigenvalues of P’ (Dt — SI)P. To determine these diagonal
elements of A, note that the characteristic roots of
P’(D*—SI)P are equal to the roots of (D*—SI) PP’ =
(Dt — SI). Relation |D* — SI — ul| =0 implies

& — (S + ) 0 0
0 4 — (S + p) 0
................. =90
0 0 " —(S+p)
n-

which can be written as
n-k
T~ - (S+ml=0

1=
and therefore
u=d~ — 8 G=, ..., nk).

Let Z = H'U. Then the first two moments of Z are
E(Z) = HE(0) =0

H'V(0)H

H'IH

I

o

Moreover, Z = H'U is a linear transformation from U to Z.

Hence Z / N(0,I). Consequently
- ‘ n-k —
z! / X*(1) and = z? [

X2 (n-k).

"We can therefore write
Pr(S £ 8) —= PR(C'HAH'T = 0)
= Pr(Z’AZ < 0)
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[n-k 1
= Pr| =z (d-S) z*> 0|
: li=1 ]
The assumptions of theorem 3.1 are satisfied by
i-1
2 (di'—S)z;* playing the role of Q with m = n-k, F=I,
i=1

d; = (d,"—S) h=1 and A, = 0. Therefore by using (3.1) we
obtain the following expression for the cumulative distribution
of S under H,, i.e.

" .
1 gin @ (r)
Pr(S8=8)=1—(%+—f ——dr) (3.2)
: = ° r@(r)
where
n-k
@ (r) =% = tan™ [(d=—8) r].
1=
- ‘ " nk D
$ () = = [L+ (d"=8) %,
d 1 sin ¢ (r) | n-k
: lmo‘f—_—= % 3 (d~-8),
L =0 gy =L
lim [e (r)]___ i n;:k (-d =1 S) ld -1__s’-x
r— © = . P - ai .
* " -7 Under the alternative hypothesis H,, we have. - . «
E(0) =0 '
V(0) = 3.
Since = is positive definite, there exists a non-singular
- matrix C such that
y | =00 ©(33)
]

Let us now derive the cimulative distribution function:
of S under H.,. We have
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[W D W 1
Pr(8§=<8) = Pr|———— = §|
ww - ]

= Pr(W(D-SI) W = 0]
= Pr[0’P’ (D —SI) PO = 0]

Now, let V = C~'U, where C is defined as in (3.3). Then
=CV so that when H, is true, we obtain

E(V) = C* E(0) =0
V(V) = C* V(D) (C)=
=C" 3 (C)=

= C=CC’ (C)~
=L (3.4)

Therefore

Pr(S £ 8) = Pr(V'C’P’ (Dm—SI) PCV = 0).
It can easily be seen that C’P’ (D= —SI) PC is a symmetric
matrix. Moreover, its eigenvalues are the characteristic

roots of

(D= —-SI)PCC’P’ (D»-8I) P P

— (D*-SI) D
= (I-SD).
But |I-SD— X\ I |= 0 implies | (1—X\) I—SD | = 0,
n-k
which imples = (1—~X—8d;) = 0. Consequently, the cha-
i=1

racteristic roots of I—-SD are

A = 1—Sd; (i=1 ..., n-k) (3.5)
Above statements imply that there is an orthogonal matrix
G such that G[C'P’ (D~*—SI)PC]1 G’=  Where/n is a

diagonal matrix whose diagonal elements are the A,’s defin-
ed in (8.5). Thus, we have

Pr(S=8) =Pr (VVG GV =0
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n-k
a(r) = i 1+ (1—Sd;)? r2}%,

1=

lim sin @ (r) n-k
=% = (1—Sd,).
r—0 r ¢ (r) i=1

Note that the distributions of S both under the null and
the null and the alternative hypothesis depend on d,, the ele-
ments of D = P = P’, which in turn is dependent on X through
P. Hence the significance points and power of S can be deter-
mined only for a given matrix X,

IV. Aopplication
Let us consider the example of the consumption of textile
in the Netherlands. The data is tabulated below
TABLE 1
TIME SERIES FOR THE TEXTILE EXAMPLE

Year y X, Xs
1923 1.99651 1.98543 2.00432
1924 1.99564 1.99167 2.00043
1925 2.00000 2.00000 2.00000
1926 2.04766 2.02078 1.95713
1927 2.08797 2.02078 1.93702
1928 2.07041 2.03941 1.95279
1929 2.08314 2.04454 1.95718
1930 2.13354 2.05038 1.91803
1931 2.18808 2.03862 1.84572
1932 2.18639 2.02243 1.81558
1933 2.20003 2.00732 1.78746
1934 2.14799 1.97955 1.79588
1935 2.13418 1.98408 1.80346
1936 2.22531 1.98945 1.72099
1937 2.18837 2.01030 1.77597
1938 2.17319 2.00689 1.77452

1939 2.21880 2.01620 1.78746
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To simplify further above expression, let
Z=GV.

Then from relation (3.4) we have
E(Z) =GE(V) =0
V(Z) = GV(V)&

=GIG

=1

n-k

This means that 3 z;?is a central chi-square variable with
i=1

n-k degrees of freedom. Therefore

Pr(8 =8) =Pr(ZnZ = 0)

n-k .
== Pr( 3z MZy S0)
i=1
n-k
=1—-Pr = (1— Sd)z.2>0)
i=1

Since the assumptions of theorem 3.1 are satlsfled by
n-k

2 (1—Sd,)z?% playing the role of Q, then the cumulatlve
i=1 _

density function of S under H, is of the form:

1 © gin & (v)
Pr(s = S)—l—(%+—-f —————dr)

™ r ¢ (r)
' 1 © gin § (r)
= %—-——-f _-——-——-—dr, (3-6)
= ° ré¢ (r)
where
n-k

8(r) = % 3 tan= [(1-8d,))r],
=]
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y = logarithm of per capita consumption of textile, ob-
tained by dividing the money value of textile consump-
tion by family households by PN.

p = retail price index of clothing for the city of Amsterdam

N = population of the Netherlands

X, = logarithm of real per capita income, obtained by divid-
ing the money value of income of family households

by N

= = general retail price index

X, — logarithm of the deflated price index of clothing, i.e.,
of the ratio P/~ .

Rao’s test criterion S, was applied to this example.

Here we have

1.99651) "1.00000
1.99564 1.00000
2.00000 1.00000
2.04766 1.00000
2.08707 1.00000
2.07041 1.00000
2.08314 1.00000
2.13354 1.00000

— < 2.18808 % , X = < 1.00000

T 2.18639 1.00000
2.20003 1.00000
2.14799 1.00000
2.13418 1.00000
2.22531 1.00000
2.188317 1.00000
2.17319 1.00000

\2.21880) _. 1.1.00000

1.98543
1.99167
2.00000
2.02078
2.02078
2.03941
2.04454
2.05038
2.03862
2.02243
2.00732
1.97955
1.98408
1.98945
2.01030
2.00689
2.01620

We would like to test the null hypothesis
H,: 0 / N(O, D

2.00432
2.00043
2.00000
1.95713
1.93702
1.95279
1.95713
1.91803

1.84572 » (4.1)

1.81558
1.78746
1.79588
1.80846
1.72099
1.77597
1.77452

1.78748 J

(4.2)
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against the alternative hypothesis that U; follow a stationary
Markoff scheme (see equation (2.4) ), with correlation coeffi-
cient £ = .8. That is

H :0 / N(O,3)

where
| 1 8  (8) (.8) %
8 1 8. (.8)
1
R e L T L (43)
1—(.8)*
(8)" (8)* (8): ... (.8)
(8)1 (8)» (8)M ... 1

~ -

First, let us find the matrix P of the transformation
W = PU. In section II, P was defined as a (n-k, n) row-ortho-
gonal matrix whose rows form a set of eigenvectorsof M =1 —
X(X’X)=X’ corresponding’ to the eigenvalue one; and which
simultaneously diagonilizes 3, the variance-covariance matrix
of U under H..

Since for any X of rank k, M is a symmetric, idempotent

matrix of rank n-k, there exists an orthogonal matrix R such
that

J In—k I O
RMR’ == - ————————1 (4.4)
Such an R was found using the SSP program EIGEN. Let us

partition R into
-~ I{.1
{2
R. U

where R, is (14, 17). Then (4.4) implies that R, form a set
set of eigenvectors of M corresponding to the eigenvalue one.
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Next we define K = R, £ R,’. Since K is symmetric, there
exists an orthogonal (14, 14) matrix T (such a T can be found
using SSP program EIGEN) such that

TKT = TR=R,/T" = D

where D is a diagonal matrix whose non-zero elements are the
eigenvalues of K. We have

(4.5)

(3120 000000000 0 0 001
0 3480 0 0 000000 0 0 O
0 03500000000 0 0 0
0 003800 000O0O0 0 0 0
0 0 0 04030 0 0 000 0 0 0
0 00 004680 00 00 0 0 0
0 0000 05150000 0 0 0

D=4 0 000 0 0 055000 0 0 0
0 00000006970 0 0 0 0
0 0000 O0O0O0 0820 0 0 0
0 0000 O0O0O0O0 011920 0 0
0 0000 O0O0O0OO 0 016540 0
0 0000 0O0O0O0O0O0 022250
0 0000O0O0O0COO0O0 0 04832

4
\

Let
P = TR,. Then
PMP’ = TR,MR,'T’
= T15
Hence P satisfies the conditions imposed on the matrix of the

transformation W = PU. Carrying out the matrix multiplica-
tion, we obtain
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I)

" 0.0207
0.1454
0.0755
0.1837
0.1005

-0.2167
0.2256

-0.2649
0.1584

-0.4714

-0.0105

-0.1686

-0.3970
0.0366

-0.0724
-0.3741
-0.4362
0.1221
-0.1027
-0.2906
-0.3684
-0.2006
-0.2435
0.1957
0.3533
-0.4185
-0.1603
-0.2319
0.3127
0.1849
-0.0929
-0.0899
0.0217
-0.1745
-0.1164
-0.0447
0.0343
0.3323
-0.2379
-0.2292
0.0548
'003206

0.1190
0.3414
0.5124
0.0356
0.0886
0.3637
0.2599
-0.1241
0.1323
-0.1532
-0.0085
0.1071
-0.1472
0.4076
0.2195
0.0707
-0.1912
-0.3874
0.4851
-0.1239
-0.1239
0.2248
0.2282
0.2696
0.0448
-0.0672
0.0674
-0.3564

-0.1802
-0.2755
-0.4619
-0.0837
0.0498
-0.3150
0.0718
0.3405
0.0533
0.0261
-0.2798
0.3077
0.3599
-0.0594
0.2703
-0.2641
0.0708
-0.0338
0.2044
0.1730
-0.1306
0.3732
0.4122
-0.1164
0.3256
0.1202
0.1042
-0.3557

0.2468
0.1862
0.3056
-0.0389
-0.2516
0.2227
-0.3466
-0.3147
-0.0175
-0.1861
-0.2435
-0.4797
-0.1433
-0.1995
0.1276
-0.0089
0.2433
0.2662
-0.3256
0.2710
0.0938
0.0310
0.2133
-0.3584
0.4719
0.1887
0.0442
-0.1725

-0.2982
-0.1167
-0.0481
0.0393
0.3676
0.0480
0.3145
0.0883
-0.2430
0.2676
-0.0519
0.2179
-0.2541
-0.2737
0.2716
0.3904
-0.1150
0.2171
-0.3318
-0.1729
0.2072
-0.4842
-0.1835
-0.1173
0.3165
0.2379
0.0316
0.0487

0.3366
0.0826
-0.1890
0.0701
-0.3352
-0.3201
-0.0186
0.1078
0.4310
-0.4397
-0.0906
-0.1357
0.1703
-0.0320
0.1831
-0.2515
-0.2104
-0.4763
0.0725
-0.0649
0.1406
-0.3568
-0.4443
0.1386
0.0447
0.0135
-0.0429
0.3115

-0.3746
-0.0525
0.2906
-0.1086
0.1508
0.3646
-0.2648
-0.1750
-0.1342
0.4857
0.2462
0.1345
0.2528
-0.3276
0.2342
-0.2934
0.1300
-0.1942
0.2812
0.0091
-0.1382
0.1313
-0.2688
0.0209
-0.2017
-0.1246
-0.1161
0.4236

0.39i47
0.0217
-0.2218
0.0663
0.0625
-0.1801
0.3707
0.0817
-0.0622
-0.2121
0.1378
-0.0652
-0.3296
0.1965
0.1088
0.2801
0.3506
0.3549
0.0257
0.1241
-0.2665
0.4693
0.1469
0.1415
-0.2740
-0.2338
-0.2351
0.4860
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The relation W = P U can be simplified into
=P [Y—X(XX)X' Y]
=PMY=PY

Using the above equation the obtain the following form for W,

by multiplying the matrix P given by (4.5) and the vector Y

given by (4.1). We have

(02430 Y
-.29779
-.1781¢
-.39676
-.22469
AT6TT
-.45960
Wo=< 57347 4
31691
1.00539
02746
37536
83127
-.08035

~ ~

We are now ready to compute the test statistic S.
We have

15
3 d|"1 le
W D2 W i=1
S = = = .329
W w 15
T W
i1
Table II, next page, gives the Pr (S = S | H,) and

Pr(S = 8 | Hl) for selected values of S. Table II was ob-
tained usmg formulas (3.2) and 3.6) where the integral
o sin @ (r)

dr was approximated using the SSP QSF.

° re (7
From this table, we can see that Ho is rejected for 3, — .055..
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TABLE II
S Pr (S < SH,) Pr (S<SH)
1 .000008 .000006
2 .000010 .000013
3 .000011 .000455
4 .000013 009166
5 .000027 037201
6 000110 087500
i .000410 159454
8 001800 249752
9 .005290 352139
1.0 013152 458964
11 028482 563044
1.2 .055004 658782
13 096448 742552
1.4 155667 812595
15 233693 868682
1.6 329014 911720
1.7 437210 943309
18 551321 965419
1.9 662868 980093
2.0 763482 989279
2.1 846733 994656
2.2 909473 997578
2.3 952071 999029
2.4 977718 999682
2.5 991116 999936
2.6 997033 999968
2.7 999187
2.8 999819
2.9 999960
3.0 999984
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The null hypothesis (4.2) was tested against the alter-
native (4.3) for the same textile example, using the BLUS
procedure with the last three components of U not estimated.
Computing for the von Neuman of U* which was defined as

14
2 (U*l-U*l—l)z
i=2
Q=
14
2 (uﬁl_ﬁ*)2
i=1

we obtain Q* = .85u72,

For a 5% level of significance, the critical region is
Q* < 1.1276. This 1s taken from a table of significance points
of Q* tabulated by Abrahamse and Koerts [1]. Hence Ho is
rejected.

Theil and Nagar [26] computed for the value of Durbin-
Watson’s test statistic d for the textile example and found it
to be equal to d = 1926. We were able to determine
the Pr (d = d | Ho) and Pr (d = | H,) for the textile
example, using the Imhof theorem, theorem 3.1. Using these
significance points, H, is not rejected at 4.1% level of signi-
ficance.

The following table summarizes the above results.

TABLE III

Testing the Independence of the Regression Errors for the
Textile Example Using Test Statistics S, Q? and d.

Rao’s S Theil’s Q* Durbin-Watson d
2 ’ Conclusion 3% | Conclusion |
.055 H, 05 H, 041 H,
| Not Rejected Rejected Rejected

The power of a test is defined as the probability that the
alternative hypothesis is accepted when it is true. Using this
definition we were able to compute the powers of S and d for
‘the textile example from the tabulated values of Pr(S <= S | H,)
and Pr(d =d | H,). The power of the BLUS test was com-
puted by Abrahamse and Koerst [1].
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- - Below is a comparison of the power of S with the powers
of d and Q*

TABLE IV

Powers of S, Q, d for the Textile Example

Rao’s S I Theil’s Q* Durbin-Watson’s d
& , Power Iy | Power
05 36 | .04 | .676

% Power
.055 l .659

To check the cumulative distribution of S derived in
Section III, the emperical distributions of this statistic under
both the null and the alternative hypothesis were constructed
using Monte Carlo procedure. The observed frequencies were
then compared with the corresponding theoretical frequencies
as computed from table II, by means of the chi-square test.
For a 5% level of significance, we conclude that the fit is good.
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