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TESTING THE INDEPENDENCE OF REGRESSION
ERRORS·

FE R. BERNARDO··

1. The Linear Regression Model

Consider the equation

L=HA
where L = (111 12, ... , In)' is a (n,l) matrix of unknown
real numbers, A = (all a2' ... , ~)' is a (K, 1) matrix of
unknown real numbers and H = (hij) 0=1, ... , n ;
j=I,2, ... ,k) is a (n,k) matrix of known real numbers.

The quantities I. 0=1,2, ... , n) are not directly ob
served. However they are supposed to differ from the ob
served quantities ZI (i = 1,2,... ,n) by unknown random
variables WI so that for every i,

Z. = I. '+ Wj . (1.1)
If W = (WI, W2, ... , wn)' and Z = ZI' Z2' ... zn)' then
(1.1) maybe written in matrix form as

Z=L'+W

or Z = HA+W (1.2)

The random variable W is assumed to be multivariate
normal with zero mean and variance-covariance matrix

•
•

."

V(W) = {
o 0 S~" }
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where S;2 is the variance of w.. It is also assumed that
each of the Si2 is a multiple of an unknown quantity S2,

•
,

that is

where the d, 's are known "weights"

Let D = (yd i Il ij), where 1l1j is the Kronecher symbol.
Applying the transformation

Y= DZ
~

equation (1.2) becomes

•

Y=XA+O (1.3)

where X = DH, U = DW. Therefore the first two mo
ments of U are

E(O) = DE(W) = 0
V(O) = D2V(W) = (disj2Ilij) = S2 I.

Since 0 = DW is a linear transformation, then 0 is a multi
normal vector (with mean zero and variance-covariance
matrix S2 I).

Equation (1.3). is known as the linear regression model.

.Since (1.3) has more unknowns than equations, it has
no unique solution. However, A can be estimated so that

.U'U .is minimum. This estimator of A,: called the least
squares estimator, is

A = (X'X)-l X'Y.

Under the assumptions on X and U mentioned above,
we have

E(A) = E (X'X)-l X' (XA + U)
= A + (X'X)-l X' E (0)
=A

•..

•

•
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and
V (A) = (X'X)-1 V (Y) (X'X)-l X'

= (X'X)-1 X' (S2 ) X (X'X)-1
= S2(X'X)-1

The likelihood function of 0 is

57

•
1 r U'U 1

L = ---- exp 1-- --I
(27T) n /2 Sn L 2s2 J

Hence:
n n 1

In L = - - In27T - - In S2 -- (Y-XA)' (Y - XA)
2 2 2s2

/\ n n -1 1\
and In L = - - In27T - -lns2-- (Y - XA)' (Y - XA),

2 2 2~

•
•

so that
-X'X

-------
aA2

Thus, Fisher's information matrix I is

r a2 In L 1
1=- EI I·

l aA2 J

r X'X 1 X'X [ )-1

- EI- 1= = IV(A)j .
l 82 J S2 [ .J

•

•

We therefore conclude A is an unbiased estimator of A,
and that in the class of all unbiased estimators of A, A has
the least variance.

However, when the components of 0 are not in
dependent of each other, then A is no longer the best esti
mator of A. This is proven in section 3.1 of text.

It is therefore necessary to test for the indepen
dence of the O. 's whenever least SQuares regression me
thods are used, that is test the hypothesis
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a, : D _/- N(O, 8 2 I)

against the hypothesis

H" : D /- N (0, S2 s)

(1.4)

(1.5)

•
,

when ~ is a 'given matrix different from I.

Since the errors Vi'S are unknown the test must be
based on the residuals from the estimated regression line
1\ (also called the least squares estimator of U) which
is defined as •

Now,

D = Y-X A
= [l - X(X'X)al X'] Y
=MY=MV

V ( D) = M V ( D) M'
= M (S2 I) M'
= S2 M

under the null hypothesis (1.4). This implies that the
residuals are correlated. Consequently, the ordinary tests
of independence can not be used to test (1.4) against (1.5). •

II. Tests of the Null Hypothesis

Von Neuman, reviving a procedure introduced in the 19th
century by a German scientist, tackles the problem of
testing for independence of regression errors by using
the ratio of the mean square successive difference to the
variance, that is:

1 n
-- ~ (Ui
n-I i=2

The null hypothesis (1.4) is rejected at significance level .£
whenever an observed Q<Q,l, where Pr (Q < Q~/Ho) = £, .

Q=-------
1 n

~ (Ui - 0.)2
n i=1

(2.1)

•
•
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T.W. Anderson and R. L. Anderson studied the model

(i=l, ... , n) (2.2),

or

••

•

where the Yl 's are observed values, the £1 's are random errors.
which are normally and independently distributed with mean
zero and variance 82

; while the iLl'S are linear combinations.
of Fourier terms. They then defined the circular serial cor
relation coefficient of this model as

n
~ (Yl - m.) (Yl-1 - m, 1)

i=l
R = -----------

where m, = m, and m, is an estimate of u.. This statistic can
be used to test the null hypothesis

H o : P = °
against the alternative hypothesis

Hn:P>O
Hn'-: P < °

where the respective critical regions are

(2.3)

•
•

with R1 and R2 being the critical values corresponding to a
given significance level.

Suppose that the alternative to the null hypothesis (1.4)\
is that the U1 's follow a stationary Markoff scheme, i.e.

u, = P(Ui-') + £1 (i= ... -1,0,1, ... ) (2.4)

where 1,8\:51 and £1 J- N (0, S2). Then the hypotheses (1.4)
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and (1.5) are equivalent to the hypotheses

IL.* p=o
a* : P > 0

(2.5)
(2.6)

respectively.

Now, the regression equation (1.3) can be written as

k
YI = ~ ajXlj + u, (i=l, ... , n).

j=l

Then (2.4) becomes •
k k

YI - ~ ajx'::j = P(YI:l - ~ a jXi-Jl)+ (I 0=1, ... , n)
j=l j=l

n
whieh falls under the model (2.2) with iLl = ~ ajXlj.

i=l

Therefore, when the regression vectors, that is the culomns
of the matrix X in the regression model (1.3) coincide with

2n7l'1

vectors (cos 2 -II i, cos 4 If i, ... , cos )' and •
n n

n

nn

2 IT i 4 11 i 2n -IT i
(sin , sin ---, ... , sin )', then

n

n
~ YI_ml) (Yj-l- ml-1)

i=l
R=------------------

s (YI-m l) 2
i=l
n

can be used to test hypothesis (2.5) against hypothesis (2.6)
with critical regions defined in (2.3).

The most commonly used test procedure is the one intro
duced by Durbin and Watson. The statistic used U8

•
•
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d=----
1\ 1\
0' 0

61

o
-1

o

o
o

-1

•

•
•

The exact distribution of d was found by Durbin-Watson
using the Imhof method. But because of the fact that
(f = [I - X (X'X)-l XIj V, the distribution of d depends on X.
Hence its significance 'Points can be tabulated only for a 'given
X, implying that these significance points will have to be com
puted everytime this test procedure is used.

Durbin and Watson showed that when S of the K regression
vectors coincide with S of the latent vectors of ~, then bounds
of d can be found equal to

rl-------

n-k
~ AI +k-8 Z2 1

i=1
r ll - - - - - - -

n-k
~ Zit

i=l

where '\11 ..• , '\0-8 are the eigen values assoclated with the
remaining n-s eigenvectors of Ad. Now, when a constant is
fitted in the regression model, the first column of the X
matrix consists of all ones. Hence it coincides with the eigen-
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•
vector of AJ corresponding to the zero eigenvalue. Thus there
exists bounds of d, that is,

dt < d< du

where

dL - -----

n-k.
}: Ai +k_1 Z 2j

i=l
diJ - ------

Instead of looking for the significance points of d, the
following procedure called the "bounds test" maybe used:

reject Ho whenever computed d< di
do not reject Ho whenever computed d > do
test inconclusive if computed d is between di and du,

This dependence on X of the distribution of test statistics
based On the least squares estimator 0 of V led to the discovery
of other estimators of V.

Theil is the first to introduce an estimator of V which is
independent of X, the BLVS estimator V*. He constructed
U* with variance-covariance matrix S2 I and such that it is
also best linear unbiased estimator of V. Because of this ad
-ditional restriction on V*, it can estimate only n-k of the errors
111> U2, .•. , u., He therefore partitioned the matrices in the
'regression equation (1.3) into

{
X

X. 10 } r u, ")A+ "'l._~

l VI J
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•

where Uo consists of the K components of U which are not
represented in U*. The matrix M is also partitioned into

-}
where Mo is (k, k) and Mll is a principal (n-k, n-k) minor.
Theil then derived U* in terms of U as

k 1 /\
U* ="01 + ~ (--- 1) P;P1'"O;

i=1 Vg1

where 0 ~ { ::}. and g, U~l•...•k) are the K roots of M"

which are less than one, and Pi are its corresponding eigen
vectors. The von Neuman ratio of U*

•
•

n-k
~ (UI* - U*I_1)2

i-2
Q* = -----------

n-r
~ (u*l-ii*)2

i=1

(2.7)

can be used to test (1.4) versus (1.5) rejecting the null hypo
thesis when an observed Q* < Q*0 where Q*0 is a constant
such that Pr (Q* < Q*0 I H o ) = a, the pre-assigned size of the
test

Abrahamse and Koerst derived another estimator W* of U
which is best in the class of all linear unbiased estimators of
U. To make W* independent of X, the authors imposed the
condition that the covariance matrix of W* is a fixed matrix
F chosen a priori to be independent of X. The expression for
W* is

•.. -lh
W* = [K'MKJ K'"O

where M = I - X (X'X)-lX' and K'K = F.

(2.8)
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•

o

Equation (2.8) shows that 'given K, or equivalently, spe
cifying F, a corresponding W* can be formed. The authors
proved that if K is chosen to be the matrix consisting of the
eigenvectors corresponding to the n-k largest roots of A.J, then

W*' A.J W·
***

Q'=------
W·' W·

has the same distribution as Durbin-Watson's upper bound du,
and hence is independent of X. .

Durbin proposes the following procedure as an alternative
to the bounds test when the regression vectors do not coincide
with the eigenvectors of Ad. Let L be the matrix whose columns
are the k-I eigenvectors of Ad corresponding to the k-l smallest
non-zero eigenvalue. Then instead of (1.3), he considered the
model

•

+u

•
where E is the vector with unit elements. Suppose al , A2 , As are
the least squares estimates of at, A 2, Aa with

v (At) = S2 c, = S2 PlP/
V (AI) = S2 G22 = 82 P2P/

Durbin then defined the vector

~ = y - a1 E - XA2 - LAa + X2A4

with A. = P1P2-1A2 ; Xl + X - L(L'L)-1 L'X. Then he showed,
that the statistic

n
~

i 2
d' = --------- •

II
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has the same distribution as du whose significance points have
already been tabulated since distribution is independent of X.

Koteswara Rao Kadiyala suggests three test criteria based
on the estimator W of U which is defined as

w= p 0

Here P is a set of eigenvectors of M = I-X (X'X)-) X which
simultaneously diagonalizes z, the variance-covariance matrix
U under the alternative hypothesis. Like Theil's BLU8 esti
mator, W estimates only n-k of the components of the error
vector U.

Rao's first test statistic is

W' n-: W
81 = - - - - -

W'W

where D = P }; P' is a diagonal matrix but whose diagonal ele
ments need not be the eigenvalues or z. Ho is rejected when
an observed 81 :5 81 J." where 81 .t. is the significance point of 81

corresponding to i, the size of the rest.

The second.test procedure proposed by Rao is based on
von Neuman ratio

W' !'J. W
8~=-----

W'W

where is the (n-k n-k) diagonal matrix with the non-zero cha
racteristic roots of A, arranged in decreasing order of magni
tude along the diagonal. The critical region is

f34 = ~W I S2 :5 82.L }

where 82J.. is a constant such that Pr (8 2 :5 82£) = .I., the pre
assigned size of the test.

For his third test criterion, Rao considers two (n-k, 1)
vector, L, and L2 such that
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•
"

where 83 ,l, is determined from the equation

both follow a cauchy distribution. Hence significance points
and power of 83 can easily be obtained.

III. Deriooiion. of the Distribution. of Roo's Test Criierion. S,

Imhof, in his paper "Computing the Distributions of
Quadratic forms in Normal Variables" [20] proved the follow
ing theorem:

Theorem 3.1. Let Z = (Zl' ... ,Zm)' be a random vector
which is normally distributed with mean 0 and covariance
matrix F. Let t-t = (t-ti> ••• , t-tm)' be a constant vector and
consider the quadratic form:

Q = (Z + t-t)' t::, (Z + t-t)

where t::, is a given matrix. If F is non-singular, 'Q can be
written as

m
Q = ~ 3; X\; ; ;\2F ,

i=l

where

3; is a non-zero root of F;

•
•

•
•
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AI is a linear combination of 1, ••• , m;'
X2

b i ; A2
1 is an independent chi-squarevariable with hi

degrees of freedom and non-centrality parameter AI:Io

Then

. where

Pr(Q 2= Z)
+.

.J
·0

sin ~(r)

r 4> (r)
dr, (3.1)

m -If.azr'e (r) = If.a ~ [hi tarr" (8rr) + ,\,2i 8i
r (1 + 8j

2r2) _IJ
i=1

m If.ahi m
4> (r) = II (l + 812r ) exp If.a ~ [AI 8jr)2 /(1 + 8(2r 2) ] .

i=1 i=1

, if z > ()

00 , if z < 0

- co

'l,"m
- ~ h l8 1 I81 '_I if z = 0
4 i=l

lim sin e (r) m
----= If.a ~ 8. (hi + Aj)2 - 1hz

r-:+O r 4> (r) i=l

•
,

•

Let us use above theorem to determine the cumula
tive distribution of Rao's S1 (henceforth to be denoted by

S), under the null hYlJ)Othesis n, : 0 /- N (0, I). We have

r W'D-1 W 1
Pr (8:S S) = Pr I =:; S\

l w' W J

= Prf (PO)' D-1_ SI) (PU) SO]'..

• Since P' (D-1 - SI) P is symmetric, then there exista an
orthogonal (n,n) matrix H such that
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H~P' (D-l - SI) PH = 6

P' (D~l - SI) P = H 6 H' ,

•
•

where 6 is the diagonal matrix whose elements are the
eigenvalues of P' (D? - SI) P. To determine these diagonal
elements of 6, note that the characteristic roots of
P' (D-1_ SI) P are equal to the roots of (D~1_ SI) PP' =
(D_l - Sol). Relation I D~l - SI 1-'1 I =0 implies

d1-
1

:.- (8 + 1-') 0 0
. 0 d2_1_ (8 + 1-') .. . 0

=0
o 0

which can be written as

Let Z = H'D. Then the first two moments of Z are
E (Z) = H'E('O) = 0

= H'V«()H
= H'IH
=1

n-k

IT [d\-l
i=l

and therefore
, :~

(8+1-')]=0,'

(i=, ... , n-k) .

,
..

Moreover, Z = H'D is a linear transformation from U to Z.

Hence Z_/ N (0,1). Consequently

_ n-k
Z\I / XZ(l) and ~ Z\2 I XZ(n-k).

i=l

'We can therefore write

Pr(8:::; S) = PR(D'H6H'D :::; 0)

= Pr(Z'6Z :::; 0)

•..
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fn-k 1
= Pr I s (dl-1-S) Z12 > 0.1.

li=l J

69

•

The assumptions of theorem 3.1 are satisfied by
i-I
~ (dl-l~S)Z12 playing the role of Q with m = n-k, F=I,
i=l
d, -.:... (d i -

1-S) h l=l and Ai = 0.' Therefore by using (3.1) we
obtain the following expression forthe cumulative distribution
of Sunder Hs, i.e .

1
Pr (S :5S) = 1 - (1;2 +- f

o

where

sin & (1')

r & (1')
dr) (3.2)

•
•

n-k
& (1') = % ~ tan-l [(d l -

1 _ S) r) .
i=l

, n.:.k
ep (1') = 7r [1 + (d l _ - l-S)21't ) '.4 ,

i=l,

lim
~oo

7r n-k
[& (1'») = -- ~ (d l-

l
_ S) Id1- l

- SI-l.
4 i=l

•
•

, : Under the alternative hypothesisHj, we have,.'

E(D) = 0

V(D) = z.

Since z is positive definite, there exists a non-singular
matrix C such that

~ = ce'
Let us now derive the cumulative distribution function:

of Sunder Ha • We have
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•
•

rw' D-l W 1
Pr (S ~ S) = Pr I s SI

LW' W - J

= Pr[W'(D-l-Sl) W s 0]

= Pr[O'P' (D-l_SI) PO s 0]

Now, let V = C-1U, where C is defined as in (3.3). Then
U=CV so that when H, is true, we obtain

E(V) = C-1 E(O) = 0
V (V) = o- V (0) (C')-1

- C-l !. (C')-1
= C_1CC' (C')oo1
=1.

Therefore

:Pr(S s S) = Pr(V'C'P' (D-1-S1) PCV s 0).

(3.4)

•

It can easily be seen that C'P' (D-l_ SI) PC is a symmetric
matrix. Moreover, its eigenvalues are the characteristic
roots of

(D-1_SI) PCC'P' = (D-i-Sl) P 1: P'
= (D-l-Sl) D
= (I-SD).

But I I-SD - X I I = 0 implies I (I-X) I-SD I = 0,
n-k

which imples '1T (I-X -Sd j ) = O. Consequently, the cha
i=1

raeteristic roots of 1- SD are

•

0=1 . 00' n-k) (3.5)

Above statements imply that there is an orthogonal matrix
G such that G[C'P' (D-1-S1) PC] G' = n Where / n is a
diagonal matrix whose diagonal elements are the A/S defin
ed in (3.5). Thus, we have

Pr(S s S) = Pr (V'G' nGV s O.

••
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n-k
G(r) 1T [1 + (1-Sdl)~ r2]~,

i=1

71

•

,

,
•

lim sin G (r) n-k
-----= lh ~ (1-Sd l ) .

r-tO r ep (r) i=1

Note that the distributions of S both under the null and
the null and the alternative hypothesis depend on d., the ele
ments of D = P ~ P', which in turn is dependent on X through
P. Hence the significance points and power of S can be deter
mined only for a given matrix X.

IV. Application

Let us consider the example of the consumption of textile
in the Netherlands. The data is tabulated below

TABLE I

TIME SERIES FOR THE TEXTILE EXAMPLE

Year y X2 Xs

1923 1.99651 1.98543 2.00432
1924 1.99564 1.99167 2.00043
1925 2.00000 2.00000 2.00000
1926 2.04766 2.02078 1.95713
1927 2.08797 2.02078 1.93702
1928 2.07041 2.03941 1.95279
1929 2.08314 2.04454 1.95713
1930 2.13354 2.05038 1.91803
1931 2.18808 2.03862 1.84572
1932 2.18639 2.02243 1.81558
1933 2.20003 2.00732 1.78746
1934 2.14799 1.97955 1.79588
1935 2.13418 1.98408 1.80346
1936 2.22531 1.98945 1.72099
1937 2.18837 2.01030 1.77597
1938 2.17~19 2.00689 1.77452
1939 2.21880 2.01620 1.78746
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To simplify further above expression, let
Z=GV.

Then from relation (3.4) we have
E(Z) = GE(V) = 0
V(Z) = GV(V)G'

= GIG'
=1.

n-k
This means that ~ Z;2 is a central chi-square variable with

i=l

n-k degrees of freedom. Therefore

Pr(S s -8) = Pr(Z'nZ s 0)

n-k
~ Pr( ~ A;Z2; ::; 0)

i=l

, n-k
= 1-Pr ~ (l-Sdl ) z\2> 0)

i=l,

Since the assumptions of theorem 3.1 are satisfied by
n-k
~ (l-Sd;) Z;2, playing the role of Q, then the cumulative

i---:'l
density function of Sunder H" is of the form:

1 00 sin e (r)
Pr(S s S) = 1 - (% + - f dr)

•
•

•

,

o r ep (r)

r ep (r)
----dr, (3.6)

1 00 sin e (r)
= %--f

o

where

n-k
6(r) = % ~ tan-1 [(1- Sd\)r] ,

1=1

••
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•

y = logarithm of per capita consumption of textile, ob
tained by dividing the money value of textile consump
tion by family households by PN.

p = retail price index of clothing for the city of Amsterdam

N = population of the Netherlands

X, = logarithm of real per capita income, obtained by divid
ing the money value of income of family households
by N

.". = general retail price index

X2 = logarithm of the deflated price index of clothing, i.e.,
of the ratio P/.". .

Rao's test criterion 8 1 was applied to this example.
Here we have

We would like to test the null hypothesis

n, : D /- N(O, I)

•

••

y=

1.99651
1.99564
2.00000
2.04766
2.08707
2.07041
2.08314
~.13354

2.18808
2.18639
2.20003
2.14799
2.13418
2.22531
2.18837
2.17319
2.21880

·X =,

'1.00000 1.98543 2.00432
1.00000 1.99167 2.00043
1.00000 2.00000 2.00000
1.00000 2.02078 1.95713
1.00000 2.02078 1.93702
1.00000 2.03941 1.95279
1.00000 2.04454 1.95713
1.00000 2.05038 1.91803
1.00000 2.03862 1.84572
1.00000 2.02243 1.81558
1.00000 2.00732 1.78746
1.00000 1.97955 1.79588
1.00000 1.98408 1.80346
1.00000 1.98945 1.72099
1.00000 2.01030 1.77597
1.00000 2.00689 1.77452
1.00000 2.01620 1.78746

(4.1)

(4.2)
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First, let us find the matrix P of the transformation
W = PO. In section II, P was defined as a (n-k, n) row-ortho
gonal matrix whose rows form a set of eigenvectors of M = I 
X (X'X)-IX' corresponding' to the eigenvalue one; and which
simultaneously diagonilizes s, the variance-covariance matrix
of U under Hn•

•

Since for any X of rank k, M is a symmetric, idempotent
matrix of rank n-k, there exists an orthogonal matrix R such
that

r I n- k I 0 I
RMR' =.,. . (

l 0 I Ok)

(4.4)

Such an 'R was found using the SSP program EIGEN. Let us
partition R into

••

•
j

R={-1
where R1 is (14, 17). Then (4.4) implies that R1 form a set
set of eigenvectors of M corresponding to the eigenvalue one.
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Next we define K = R, ~ R,'. Since K is symmetric, there
exists an orthogonal (14, 14) matrix T (such a T can be found
using SSP program EIGEN) such that

TKT' = TR1~tR/T' = D

where D is a diagonal matrix whose non-zero elements are the
eigenvalues of K. We have

(4.5)

.312 0 0 0 0 0 0 0 0 0 0 0 0 0
0 .348 0 0 0 0 0 0 0 0 0 0 0 0
0 0.355 0 0 0 0 0 0 0 0 0 0 0
0 0 0.383 0 0 0' 0 0 0 0 0 0 0
0 0 0 0.403 0 0 0 0 0 0 0 0 0
0 0 0 0 0.468 0 0 0 0 0 0 0 0
0 0 0 0 0 0.515 0 0 0 0 0 0 0

D= 0 0 0 0 0 0 0.565 0 0 0 0 0 0
0 0 0 0 0 0 0 0.697 0 0 0 0 0

• 0 0 0 0 0 0 0 0 0.892 0 0 0 0
0 0 0 0 0 0 0 0 0 01.192 0 0 0

• 0 0 0 0 0 0 0 0 0 0 0 1.654 0 0
0 0 0 0 0 0 0 0 0 0 0 o 2.225 0
0 0 0 0 0 0 0 0 0 0 0 0 o 4.832

Let

P = TR i • Then

PMiP.' = TR1MRt'T'

• Hence P satisfies the conditions imposed on the matrix of the
transformation W = PD. Carrying out the matrix multiplica
tion, we obtain
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o
c
~
-:r:z
~
~
~

Ii
~
r.:..

\0
to-

0.0207 -0.0724 0.1190 -0.1802 0.2468 -0.2982 0.3366 -0.3746 0.3914
-0.3741 0.3414 -0.2755 0.1862 -0.1167 0.0826 -0.0525 0.0217

0.1454 -0.4362 0.5124 -0.4619 0.3056 -0.0481 -0.1890 0.2906 -0.2218
0.1221 0.0356 -0.0837 -0.0389 0.0393 0.0701 -0.1086 0.0663

0.0755 -0.1027 0.0886 0.0498 -0.2516 0.3676 -0.3352 0.1508 0.0625
-0.2906 0.3637 -0.3150 0.2227 0.0480 -0.3201 0.3646 -0.1801

0.1837 -0.3684 0.2599 0.0718 -0.3466 0.3lt!5 -0.0186 -0.2648 0.3707
-0.2006 -0.1241 0.3405 -0.3147 0.0883 0.1078 -0.1750 0.0817

0.1005 -0.2435 0.1323 0.0533 -0.0175 -0.2430 0.4310 -0.1342 -0.0622
0.1957 -0.1532 0.0261 -0.1861 0.2676 -0.4397 0.4857 -0.2121

-0.2167 0.3533 -0.0085 -0.2798 -0.2435 -0.0519 -0.0906 0.2462 0.1378
-0.4185 0.1071 0.3077 -0.4797 0.2179 -0.1357 0.1345 -0.0652

0.2256 -0.1603 -0.1472 0.3599 -0.1433 -0.2541 0.1703 0.2528 -0.3296
-0.2319 0.4076 -0.0594 -0.1995 -0.2737 -0.0320 -0.3276 0.1965

P =c .< -0.2649 0.3127 0.2195 0.2703 0.1276 0.2716 0.1831 0.2342 0.1088
0.1849 0.0707 -0.2641 -0.0089 0.3904 -0.2515 -0.2934 0.2801

0.1584 -0.0929 -0.1912 0.0708 0.2433 -0.1150 -0.2104 0.1300 0.3506
-0.0899 -0.3874 -0.0338 0.2662 0.2171 -0.4763 -0.1942 0.3549

-0.4714 0.0217 0.4851 0.2044 -0.3256 -0.3318 0.0725 0.2812 0.0257
-0.1745 -0.1239 0.1730 0.2710 -0.1729 -0.0649 0.0091 0.1241

-0.0105 -0.1164 -0.1239 -0.1306 0.0938 0.2072 0.1406 -0.1382 -0.2665
-0.0447 0~2248 0.3732 0.0310 -0.4842 -0.3568 0.1313 0.4693

-0.1686 0.0343 0.2282 0.4122 0.2133 -0.1835 -0.4443 -0.2688 0.1469
0.3323 0.2696 -0.1164 -0.3584 -0.1173 0.1386 0.0209 0.1415

-0.3970 -0.2379 0.0448 0.3296 004719 0.3165 0.0447 -0.2017 -0.2740
-0.2292 -0.0672 0.1202 0.1887 0.2379 0.0135 -0.1246 -0.2338

0.0366 0.0548 0.0674 0.1042 0.0442 0.0316 -0.0429 -0.1161 -0.2351
.~9,3206 -0.3564 -0.3557 -0.1721:> 0.0487 O,3111? 0.~23(j 004860
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The relation W = P 0 can be simplified into

= P [Y-X(X'X)-lX' YJ

=PMY=PY

77.'

Using the above equation the obtain the following form for W
by multiplying the matrix Pgiven by (4.5) and the vector yl
given by (4.1). We have

•

•

W=

.02430
-.29779
-.178H~

-.39676
-.22469
.47677

-.45960
.57347
.31691

1.00539
.02746
.37536
.83127

-.08035

We are now ready to compute the test statistic S.
We have

S = ---- - ----- = .329
W'W

Table II, next 'Page, gives the Pr (S ~ S I Ho ) and
Pir(S s S I Hi) for selected values of S. Table II was ob
tained using formulas (3.2) and 3.6) where the integral

!Xl sin & (r)
f dr was approximated using the SSP QSF'~

o ref> (r)

From this table, we can see that Ho is rejected for J., = .055..
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TABLE II

•
•

'==========---_.-.. --=--== ===

S Pr (S s SIL,) Pr (S ::; S Hi)-_.-
.1 .000008 .000006
.2 .000010 .000013
.3 .000011 .000455
.4 .000013 .009166
.5 .000027 .037201
.6 .000110 .087500
.7 .000410 .159454
.8 .001800 .249752
.9 .005290 .352139

1.0 .013152 .458964
1.1 .028482 .563044
1.2 .055004 .658782
1.3 .096448 .742552
1.4 .155667 .812595
1.5 .233693 .868682
1.6 .329014 .911720
1.7 .437210 .943309
1.8 .551321 .965419
1.9 .662868 .980093
2.0 .763482 .989279
2.1 .846733 .994656
2.2 .909473 .. .997578
2.3 .952071 .999029
2.4 .977718 .999682
2.6 .991116 .999936
2.6 .997033 .999968
2.7 .999187
2.8 .999819
2.9 .999960
3.0 .999984

•

•
•

"
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The null hypothesis (4.2) was tested against the alter
native (4.3) for the same textile example, using the BLUS
procedure with the last three components of U not estimated.
Computing for the von Neuman of U* which was defined as

14
~ (U*l-U*t-l)2

i=2
Q* - ---------

14
s (U*I- U*P

i=1
we obtain Q* = ~85\~72.

For a 5% level of significance, the critical region is
Q* < 1.1276. This is taken from a table of significance points
of Q* tabulated by Abrahamse and Koerts [1]. Hence Ho is
rejected.

Theil and Nagar [26] computed for the value of Durbin
Watson's test statistic d for the textile example and found it
to be equal to d = 1926. We were able to determine
the Pr (d s d I Ho) and Pr (d :::; I HI) for the textile
example, using the Imhof theorem, theorem 3.1. Using these
significance points, H, is not rejected at 4.1% level of signi
ficance.

The following table summarizes the above results.

TABLE III

Testing the Independence of the Regression Errors for the
Textile Example Using Test Statistics SI Q2 and d.

Rao's S Theil's Q* Durbin-Watson d

_oZ._I Conclusion ,1, Conclusion ;L

.05 Ho .041 H o.055
1

n,
Not Rej ected Rejected Rejected

The power of a test is defined as the probability that the
alternative hypothesis is accepted when it is true. Using this
definition we were able to compute the powers of Sand d for
the textile example from the tabulated values of Pr (S s S I HI)
and Pr (d s d I HI)' The power of the BLUS test was com
puted by Abrahamse and Koerst [1].
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Below is a comparison of the power of S with the powers
of d and Q*

TABLE IV

Powers of S, Q, d for the Textile Example

Rao's S Theil's Q*

•
.041

Durbin-Watson's d

----I Power
.676.36

Power

.05I
Power

.659.055

To check the cumulative distribution of S derived in
Section III, the emperical distributions of this statistic under
both the null and the alternative hypothesis were' constructed
using Monte Carlo procedure. The observed frequencies were
then compared with the corresponding theoretical frequencies
as computed from table II, by means of the chi-square test.
For a 5% level of significance, we conclude that the fit is good.

•
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